SSC CGL-210011 GRAND TEST

 HINTS AND SOLUTIONS
ANSWER KEY

1	(1)	26	(4)	51	(2)	76	(3)
2	(1)	27	(1)	52	(3)	77	(2)
3	(3)	28	(1)	53	(2)	78	(2)
4	(2)	29	(4)	54	(2)	79	(3)
5	(4)	30	(3)	55	(4)	80	(3)
6	(2)	31	(3)	56	(3)	81	(3)
7	(3)	32	(4)	57	(1)	82	(3)
8	(3)	33	(3)	58	(2)	83	(3)
9	(3)	34	(2)	59	(1)	84	(3)
10	(4)	35	(3)	60	(3)	85	(3)
11	(1)	36	(3)	61	(4)	86	(3)
12	(2)	37	(4)	62	(2)	87	(3)
13	(4)	38	(2)	63	(2)	88	(3)
14	(2)	39	(2)	64	(1)	89	(1)
15	(3)	40	(3)	65	(1)	90	(3)
16	(3)	41	(2)	66	(3)	91	(1)
17	(4)	42	(4)	67	(3)	92	(2)
18	(4)	43	(3)	68	(4)	93	(3)
19	(2)	44	(2)	69	(3)	94	(3)
20	(1)	45	(3)	70	(2)	95	(1)
21	(2)	46	(3)	71	(1)	96	(4)
22	(4)	47	(1)	72	(3)	97	(1)
23	(4)	48	(1)	73	(2)	98	(3)
24	(4)	49	(3)	74	(3)	99	(2)
25	(4)	50	(2)	75	(1)	100	(1)

1. (1) $363=3+6+3=12=1+2=3$ $572=5+7+2=14=1+4=5$
2. (1) The first two letters are written in reverse order in the second term. The third letter is replaced by a letter occupying the same position from the end of the alphabet.
3. (3) Second can be obtained by moving 135° in clockwise direction from first.
4. (2) The first, Third, Fifth and Seventh letters are moved one step backward to obtain the corresponding letters and rest of the letters are same.
5. (4) All except Chocolate are baked items.
6. (2) All except (2) are insects having six legs.
7. (3) Sum of digits in each number except (3) is 28.
8. (3) In all other pairs the ratios is $8: 9$.
9. (3) Letters

ALGUT
Digits
23549
10. (4) The letter ' V ' of REPRIEVE is not present in DEPRECIATE.
11. (1) $(9+8)-(4+4)=17-8=9$
$(11+5)-(3+3)=16-6=10$
$(7+16)-(6+5)=23-11=12$
12. (2) $8+7=15$ and $2 \times 15=30$ $1+7=8$ and $3 \times 8=24$
$6+12=18$ and $2 \times 18=36$
13. (4) Let number of horses $=$ number of men $=x$.

Then, number of legs $=4 x+2 \times \frac{x}{2}=5 x$.
So, $5 \mathrm{x}=90$ or $\mathrm{x}=18$
So, there are $(18+18)=36$ horses and men in total.
14. (2) A 'tractor' is used to plough a field.

But a 'tractor' is called 'car'.
So, a 'car' will be used to plough a field.
15. (3) From the given information, we have-

Gopal > Raman > Madan
Amar $>$ Sripal $>$ Gopal
Tarun $>$ Amar $>$ Varun
Combining all the above, we get
Tarun $>$ Amar > Sripal > Gopal > Raman > Madan
Position of Varun will be somewhere after Amar, but it is not fixed as relation of Varun with anyone is not given. Hence, Tarun is the strongest.
16. (3) The sequence is-
$1 \times 2,2 \times 3,3 \times 4,4 \times 5,5 \times 6,6 \times 7,7 \times 8,8 \times 9$.
So, required answer $=8 \times 9=72$
17. (4) P is on the left of O i.e. P, O.

N is on the right of Q i.e. Q, N.
M is on the right of O i.e. O, M.
N is on the left of P i.e. N, P.
From the above statements, the correct order is: Q, N, P, OM.
Clearly, P is sitting in the centre.
18. (4) After exchanging the signs we have,

Given expression $=\frac{(36-4) \div 8-4}{4 \times 8-2 \times 16+1}$

$$
=\frac{(32 \div 8-4)}{(32-32+1)}=0
$$

19. (2)

The horizontal lines are AK, BJ, CI, DH and EG i.e. 5 in number.
The vertical lines are AE, LF and KG i.e. 3 in number. The slanting lines are LC, CF, FI, LI, EK and AG i.e. 6 in number.
Thus, we require $5+3+6=14$ straight lines to make the given figure.
20. (1) Only conclusion I follows.

I. $\sqrt{ }$ II. \boldsymbol{x}
21. (2) According to Rahul, the brother's birthday is on one of the days among 16 th and 17 th February.
According to Soumya, the brother's birthday is on one of the days among 17 th and 18 th February.
Clearly, Rahul's brother's birthday is on the day common to both the above groups i.e., 17 th February. Hence, the answer is (2).
22. (4) $\mathrm{aa} / \mathrm{b} \underline{\mathrm{b}} / \mathrm{aa} \underline{\mathrm{a}} / \mathrm{bbb} / \underline{\mathrm{a}} \mathrm{aaa} / \underline{\mathrm{b}} \mathrm{bbb} / \mathrm{a}$
23. (4) Clearly, the last train left two and a half hours before 18:00 hours i.e. at 15:30 hours. But this happened 40 minutes before the announcement. So, the announcement was made at $16: 10$ hours.
24. (4)

25. (4)

51. (2) Let the height of the building x metres. Less lengthy shadow, less in the height
(Direct proportion)
$\therefore 40.25: 28.75:$: $17.5: x$
$\Rightarrow 40.25 \times x=28.75 \times 17.5$
$\Rightarrow \mathrm{x}=\frac{28.75 \times 17.5}{40.25}=12.5$
52. (3) Let the distance travelled by xm . Then,
$\frac{x}{10}-\frac{x}{15}=2$
$\Rightarrow 3 \mathrm{x}-2 \mathrm{x}=60 \Rightarrow \mathrm{x}=60 \mathrm{~km}$
Time taken to travel 60 km at $10 \mathrm{~km} / \mathrm{hr}$
$=\left(\frac{60}{10}\right) \mathrm{hrs}=6 \mathrm{hrs}$.
So, Vivek started 6 hours before 2 P.M. i.e., at 8 A.M.
\therefore Required speed $=\left(\frac{60}{5}\right) \mathrm{km} / \mathrm{hr} .=12 \mathrm{~km} / \mathrm{hr}$.
53. (2) C's 1 day's work
$=\frac{1}{3}-\left(\frac{1}{6}+\frac{1}{8}\right)=\frac{1}{3}-\frac{7}{24}=\frac{1}{24}$
A's wages : B's wages : C's wages
$=\frac{1}{6}: \frac{1}{8}: \frac{1}{24}=4: 3: 1$.
\therefore C's share (for 3 days) $=`\left(3 \times \frac{1}{24} \times 3200\right)={ }^{`} 400$
54. (2) C.P. of 56 kg rice $=`(26 \times 20+30 \times 36)$

$$
=`(520+1080)={ }^{`} 1600
$$

S.P. of 56 kg rice $={ }^{`}(56 \times 30)={ }^{`} 1680$
\therefore Gain $=\left(\frac{80}{1600} \times 100\right) \%=5 \%$
55. (4) Ratio of initial investments
$=\left(\frac{7}{2}: \frac{4}{3}: \frac{6}{5}\right)=105: 40: 36$.
Let the initial investments be $105 \mathrm{x}, 40 \mathrm{x}$ and 36 x .
$\therefore \mathrm{A}: \mathrm{B}: \mathrm{C}=\left(105 \mathrm{x} \times 4+\frac{150}{100} \times 105 \mathrm{x} \times 8\right)$

$$
:(40 x \times 12):(36 x \times 12)
$$

$$
=1680 x: 480 x: 432 x=35: 10: 9
$$

Hence, B's share $=`\left(21600 \times \frac{10}{54}\right)=` 4000$
56.
(3) $\frac{4 x-3}{x}+\frac{4 y-3}{y}+\frac{4 z-3}{z}=0$
$\Rightarrow \frac{4 x}{x}-\frac{3}{x}+\frac{4 y}{y}-\frac{3}{y}+\frac{4 z}{z}-\frac{3}{z}=0$
$\Rightarrow \frac{3}{x}+\frac{3}{y}+\frac{3}{z}=4+4+4=12 \Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{12}{3}=4$.
57. (1) $2 \mathrm{x}+3 \mathrm{x}+5 \mathrm{x}=180^{\circ}-45^{\circ}=135$
$\Rightarrow 10 \mathrm{x}=135^{\circ}$
$\Rightarrow \mathrm{x}=\frac{135}{10}=\frac{27}{2}$

$$
\begin{aligned}
\text { Largest angle } & =5 x+15^{\circ}=\left(5 \times \frac{27}{2}\right)^{\circ}+15^{\circ} \\
& =\frac{135+30}{2}=\frac{165^{\circ}}{2}
\end{aligned}
$$

$\because 180^{\circ}=\pi$ radian
$\therefore \frac{165^{\circ}}{2}=\frac{\pi}{180} \times \frac{165}{2}=\frac{11 \pi}{24}$ radian
58. (2) Let C.P. $=` 100$,

Then, Profit $={ }^{`} 320$, S.P. $={ }^{`} 420$
New C.P. $=125 \%$ of ${ }^{`} 100=` 125$
New S.P. = ` 420 Profit \(=`(420-125)=` 295\)
\therefore Required percentage
$=\left(\frac{295}{420} \times 100\right) \%=\frac{1475}{21} \%=70 \%$ (approx.)
59. (1) Let the present ages of Sameer and Anand be 5x years and $4 x$ years respectively.
Then, $\frac{5 x+3}{4 x+3}=\frac{11}{9}$
$\Rightarrow 9(5 \mathrm{x}+3)=11(4 \mathrm{x}+3)$
$\Rightarrow 45 \mathrm{x}+27=44 \mathrm{x}+33$
$\Rightarrow 45 \mathrm{x}-44 \mathrm{x}=33-27$
$\Rightarrow \mathrm{x}=6$
\therefore Anand's present age $=4 \mathrm{x}=24$ years.

Grand Test : CGL-210011
60. (3)

\therefore Required $\%=\frac{230}{920} \times 100=\frac{2300}{92}=25 \%$ profit
61. (4)

$8 \%=200$
Total no. of females $=2500$
62. (2) $\angle \mathrm{AOC}=\angle \mathrm{BOD}=31^{\circ}$ (vertically opposite)
$\therefore \angle \mathrm{BOC}=180^{\circ}-\angle \mathrm{AOC}=149^{\circ}$
63. (2)

$\mathrm{AB}=$ Length of the thread $=150$ metre $\angle \mathrm{BAC}=60^{\circ}$
In $\triangle \mathrm{ABC}$,
$\sin 60^{\circ}=\frac{\mathrm{BC}}{\mathrm{AB}} \Rightarrow \frac{\sqrt{3}}{2}=\frac{\mathrm{BC}}{150}$
$\Rightarrow \mathrm{BC}=150 \times \frac{\sqrt{3}}{2}=75 \sqrt{3}$ metre
64. (1) Speed of flowing water $=12 \mathrm{~cm} / \mathrm{s}$

Time $=$ one hour $=3600$ seconds
Quantity of water pumped out through pipe in one
second $=\pi \times\left(\frac{7}{2}\right)^{2} \times 12 \mathrm{~cm}^{3}$
Total quantity in 1 hour
$=\pi \times\left(\frac{7}{2}\right)^{2} \times 12 \times 3600 \mathrm{~cm}^{3}$
$=\frac{22}{7} \times \frac{7 \times 7 \times 12 \times 3600}{4 \times 1000} l=1663.2 l$
65. (1) Let the sum invested in Scheme A be ' x and that in Scheme B be ` \((13900-x)\). Then, \(\left(\frac{x \times 14 \times 2}{100}\right)+\left(\frac{(13900-x) \times 11 \times 2}{100}\right)=3508\) \(\Rightarrow 28 \mathrm{x}-22 \mathrm{x}=350800-(13900 \times 22)\) \(\Rightarrow 6 \mathrm{x}=45000\) \(\Rightarrow \mathrm{x}=7500\) So, sum invested in Scheme B \(=`(13900-7500)=` 6400\)
66. (3) Let total no. of voting list $=100 \mathrm{x}$

Total votes polled $=90 \mathrm{x}$
Valid votes $=90 \mathrm{x}-1200$
Winner gets votes $=68 \mathrm{x}$
So, loser gets votes $=(90 x-1200)-68 x=22 x-1200$
So, according to the question,
$68 \mathrm{x}-(22 \mathrm{x}-1200)=56400$
$46 x+1200=56400$
$46 \mathrm{x}=56400-1200$
$x=\frac{55200}{46}$
Votes in favour of losing candidate
$=22 \times \frac{55200}{46}-1200=25200$
67. (3) Area of the base $=40 \times 40=1600 \mathrm{~cm}^{2}$

We know, Volume of pyramid
$=\frac{1}{3} \times$ area of base \times height
$\Rightarrow 8000=\frac{1}{3} \times 1600 \times \mathrm{h} \Rightarrow \mathrm{h}=\frac{8000 \times 3}{1600}=15 \mathrm{~cm}$
68. (4) Expression $=(x-2)(x-9)$

$$
=x^{2}-11 x+18=a x^{2}+b x+c
$$

Minimum value $=\frac{4 \mathrm{ac}-\mathrm{b}^{2}}{4 \mathrm{a}}=\frac{4 \times 1 \times 18-121}{4}=\frac{-49}{4}$
69. (3)

Area of $\| \mathrm{gm}=$ Base \times Height
$\therefore \operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})=\mathrm{AB} \times \mathrm{DM}=(10 \times 7) \mathrm{cm}^{2}$
Also, $\operatorname{ar}(\| \mathrm{gm} \mathrm{ABCD})=\mathrm{AD} \times \mathrm{BN}$

$$
\begin{equation*}
=(\mathrm{AD} \times 8) \mathrm{cm}^{2} \tag{i}
\end{equation*}
$$

From (i) and (ii), we have,
$10 \times 7=\mathrm{AD} \times 8$
$\Rightarrow \mathrm{AD}=\frac{35}{4}=8.75 \mathrm{~cm}$
70. (2) Radius of circular wire $=\frac{42}{2}=21 \mathrm{~cm}$

Circumference of wire $=2 \pi \mathrm{r}=2 \times \frac{22}{7} \times 21=132 \mathrm{~cm}$
Let the length and breadth of rectangle be $6 x$ and $5 x$ respectively.
\therefore Perimeter of rectangle $=2(6 x+5 x)=22 x$
According to the question,
$22 \mathrm{x}=132 \Rightarrow \mathrm{x}=\frac{132}{22}=6$
\therefore Length of rectangle $=6 \mathrm{x}=6 \times 6=36 \mathrm{~cm}$
Breadth of rectangle $=5 \mathrm{x}=5 \times 6=30 \mathrm{~cm}$
\therefore Area $=36 \times 30=1080 \mathrm{~cm}^{2}$
71. (1) $15 \%=\frac{3}{20}, 10 \%=\frac{1}{10}, 5 \%=\frac{1}{20}$

72. (3) $x+y+z=13$
$x^{2}+y^{2}+z^{2}=69$
$(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2(x y+y z+z x)$
$\Rightarrow(13)^{2}=69+2(x y+y z+z x)$
$\Rightarrow 2(x y+y z+z x)=169-69=100$
$\Rightarrow \mathrm{xy}+\mathrm{yz}+\mathrm{zx}=\frac{100}{2}=50$.
73. (2)

$\angle \mathrm{OQA}=\angle \mathrm{OPA}=90^{\circ}$
$\angle \mathrm{QOP}+\angle \mathrm{QAP}=180^{\circ}$
$\Rightarrow \angle \mathrm{QOP}=\angle \mathrm{SOR}=2 \angle \mathrm{STR}$
$\Rightarrow \angle \mathrm{QOP}=\angle \mathrm{SOR}=2 \angle \mathrm{STR}$
$\therefore \angle \mathrm{RTS}=\frac{148}{2}=74^{\circ}$
74. (3) $\mathrm{p}+\frac{1}{4} \sqrt{\mathrm{p}}+\mathrm{k}^{2}=(\sqrt{\mathrm{p}})^{2}+2 \cdot \sqrt{\mathrm{p}} \cdot \frac{1}{8}+\left(\frac{1}{8}\right)^{2}-\left(\frac{1}{8}\right)^{2}+\mathrm{k}^{2}$
$\Rightarrow \mathrm{k}^{2}=\left(\frac{1}{8}\right)^{2} \Rightarrow \mathrm{k}= \pm \frac{1}{8}$
75. (1) $\cos \left(180^{\circ}+\mathrm{A}\right)+\cos \left(180^{\circ}+\mathrm{B}\right)+\cos \left(180^{\circ}+\mathrm{C}\right)+$ $\cos \left(180^{\circ}+\mathrm{D}\right)$
$=-\cos \mathrm{A}-\cos \mathrm{B}-\cos \mathrm{C}-\cos \mathrm{D}$
$=-\cos \left(180^{\circ}-\mathrm{C}\right)-\cos \left(180^{\circ}-\mathrm{D}\right)-\cos \mathrm{C}-\cos \mathrm{D}$
$\left[\because \mathrm{A}+\mathrm{C}+=\mathrm{B}+\mathrm{D}=180^{\circ}\right.$ cyclic quadrilateral $]$
$=\cos \mathrm{C}+\cos \mathrm{D}-\cos \mathrm{C}-\cos \mathrm{D}$
$=0$
76. (3) 'Different' will take 'from' after it.
77. (2) 'Averse' will take 'to'. 'Averse to hard work' means 'not liking hard work or not wanting to work hard'.
78. (2) Replace 'besides' with 'beside'. 'Besides' means 'in addition to something/ somebody'.
84. (3) Repel
90. (3) Replace 'did' by 'as'. 'As soon as' is a co-relative conjunction.

